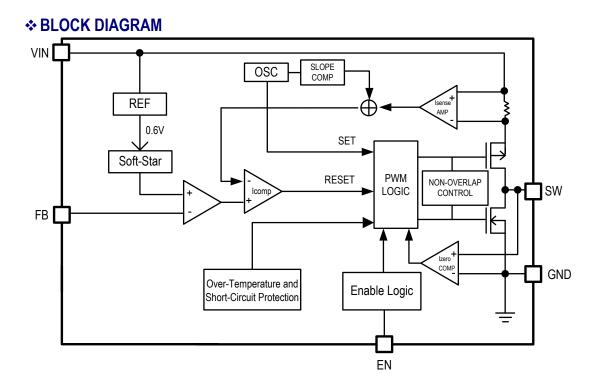
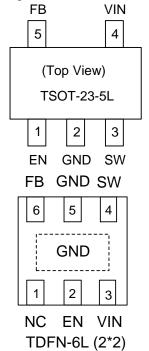
AX3513 空瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

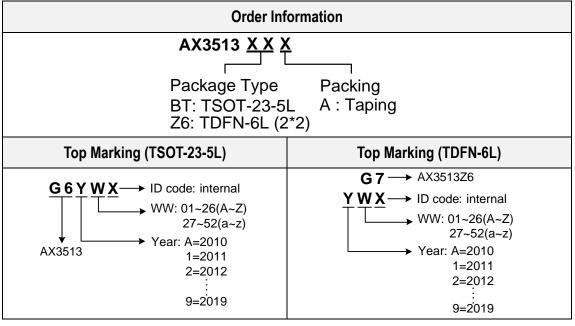

<u>1.4MHz, 1A Synchronous Step-Down</u> <u>Converter</u>

✤ GENERAL DESCRIPTION

AX3513 is a high efficiency monolithic synchronous buck regulator using a constant frequency, current mode architecture. The device is available in an adjustable version. Supply current with no load is 250uA and drops to <1uA in shutdown. The 2.5V to 5.5V input voltage range makes AX3513 ideally suited for single Li-lon, two to three AA battery-powered applications. 100% duty cycle provides low dropout operation, extending battery life in portable systems. PWM operation provides very low output ripple voltage for noise sensitive applications. Switching frequency is internally set at 1.4MHz, allowing the use of small surface mount inductors and capacitors. The internal synchronous switch increases efficiency and decreases need of an external schottky diode. Low output voltages are easily supported with the 0.6V feedback reference voltage. AX3513 is available in small TSOT-23-5L and TDFN-6L packages.


✤ FEATURES

- 2.5V to 5.5V Input Voltage Range
- Output Voltage from 0.6V to VIN
- High Efficiency: Up to 96%
- 1.4MHz Constant Frequency Operation
- Up to 1A Output Current
- Quiescent Current: 250uA (Typical)
- No Schottky Diode Required
- Current Mode Operation for Excellent Line and Load Transient Response
- Current limit, Enable function
- Short Circuit Protect (SCP)
- Build in soft start function
- $\leq 1\mu$ A Shutdown Current
- TSOT-23-5L and TDFN-6L Pb-Free packages


*** PIN ASSIGNMENT**

The packages of AX3513 are TSOT-23-5L and TDFN-6L; the pin assignment is given by:

Name	Description
	Enable pin
EN	H : normal operation
	L:Shutdown
GND	Ground Pin
	Switch output pin. Connect
sw	external inductor here. Minimize
300	trace area at this pin to reduce
	EMI.
VIN	Power Supply Input Pin
FB	Output Feedback pin
NC	No Connect.

*** ORDER/MARKING INFORMATION**

★ ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Characteristics	Symbol	Rating	Unit		
VIN Pin Voltage	V _{IN}	V_{SS} - 0.3 to GND+6.5	V		
Feedback Pin Voltage	V_{FB}	V_{SS} - 0.3 to $V_{\text{IN}}\text{+}0.3$	V		
EN Pin Voltage		V_{EN}	V_{SS} - 0.3 to $V_{\text{IN}}\text{+}0.3$	V	
Switch Pin Voltage		Vsw	V_{SS} - 0.3 to $V_{\text{IN}}\text{+}0.3$	V	
Peak SW Sink and Source Current		I _{PSW}	1.4	Α	
Power Dissipation	PD	(T _J -T _A) / θ _{JA}	mW		
Storage Temperature Range		T _{ST}	-40 to +150	°C	
Operating Temperature Range		T _{OP}	-40 to +85	°C	
Junction Temperature		TJ	+125	°C	
Thermal Resistance from Junction to	TDFN-6L	θ _{JC}	25	°C/W	
case	TSOT-23		110		
Thermal Resistance from Junction to	TDFN-6L	θ _{JA}	120	°C/W	
ambient	TSOT-23		250		

Note: θ_{JA} is measured with the PCB copper area of approximately 1 in²(Multi-layer). That need connect to GND pin or exposed pad (AX3513Z6).


*** ELECTRICAL CHARACTERISTICS**

 $(V_{IN} = V_{EN}=3.6V, T_A = 25^{\circ}C, unless otherwise specified)$

Characteristics	Symbol	Conditions	Min	Тур	Max	Units	
Input Voltage Range	V _{IN}		2.5	-	5.5	V	
Faadbaak) (altana	V _{FB}	T _A = +25°C	0.588	0.600	0.612	V	
Feedback Voltage		-40°C≤T _A ≤ 85°C	0.582	0.600	0.618		
Feedback Bias Current	I _{FB}	V _{FB} =0.65V	-	-	±30	nA	
Quiescent Current	I _{CCQ}	V _{FB} =1V	-	250	350	uA	
Shutdown Supply Current	I _{SD}	V _{EN} =0V	-	0.1	1	uA	
Switching Current Limit	I _{LIMIT}		1.2	1.4	-	А	
Line Regulation		V _{IN} = 2.5V to 5.5V	-	0.04	0.4	%/V	
Load Regulation	∆Vout/Vout	I _{OUT} = 0.01 to 1A	-	0.5	-	%	
Oscillation Frequency	Fosc	SW pin	1.1	1.4	1.7	MHz	
R _{DS(ON)} of P-CH MOSFET	R _{DSON}	V _{FB} = 0V, I _{OUT} = 0.5A	-	0.3	0.4	Ω	
R _{DS(ON)} of N-CH MOSFET	R _{DSON}	(Note 1)	-	0.25	0.35	Ω	
EN pin logic input threshold	V _{ENL}		-	-	0.4	V	
voltage	V _{ENH}		1.5	-	-	V	
EN Pin Input Current	I _{EN}		-	±0.1	±1	uA	
Efficiency	EFFI	V _{IN} =5V, V _{OUT} =3.3V, I _{OUT} =0.5A	-	94	-	%	
Thermal shutdown	T _{DS}		-	140	-	°C	
Thermal shutdown Hysteresis	T _{SH}		-	30	-	°C	

Note 1: Guaranteed by design.

*** APPLICATION CIRCUIT**

***** FUNCTION DESCRIPTIONS

Operation

AX3513 is a monolithic switching mode step-down DC-DC converter. It utilizes internal MOSFETs to achieve high efficiency and can generate very low output voltage by using internal reference at 0.6V. It operates at a fixed switching frequency, and uses the slope compensated current mode architecture. This step-down DC-DC Converter supplies minimum 1000mA output current at input voltage range from 2.5V to 5.5V.

Current Mode PWM Control

Slope compensated current mode PWM control provides stable switching and cycle-by-cycle current limit for excellent load and line transient responses and protection of the internal main switch (P-Ch MOSFET) and synchronous rectifier (N-CH MOSFET). During normal operation, the internal P-Ch MOSFET is turned on for a certain time to ramp the inductor current at each rising edge of the internal oscillator, and switched off when the peak inductor current is above the error voltage. The current comparator, I_{COMP} , limits the peak inductor current. When the main switch is off, the synchronous rectifier will be turned on immediately and stay on until either the inductor current starts to reverse, as indicated by the current reversal comparator, I_{ZERO} , or the beginning of the next clock cycle.

***** APPLICATION INFORMATION

Setting the Output Voltage

Application circuit item shows the basic application circuit with AX3513 adjustable output version. The external resistor sets the output voltage according to the following equation:

$$V_{OUT} = 0.6V \times \left(1 + \frac{R1}{R2}\right)$$

Table 1 Resistor select for output voltage setting

V _{OUT}	R2	R1
1.2V	300K	300K
1.5V	300K	450K
1.8V	300K	600K
2.5V	150K	470K
3.3V	120K	540K

Inductor Selection

For most designs, the AX3513 operates with inductors of 2.2μ H to 3.3μ H. Low inductance values are physically smaller but require faster switching, which results in some efficiency loss. The inductor value can be derived from the following equation:

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I_{L} \times f_{osc}}$$

Where is inductor Ripple Current. Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 20% of the maximum load current 1000mA, ΔI_L =200mA.

Table 2 Inductor select for output voltage setting (V_{IN} =3.6V)

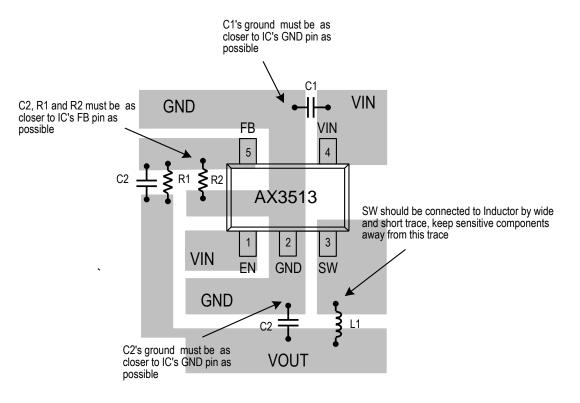
Vout	1.2V	1.5V	1.8V	2.5V
Inductor	2.2uH	2.2uH	2.2uH	2.2uH
Part Number WE-TPC	7440430022	7440430022	7440430022	7440430022

Note: Part type MH or M (www.we-online.com)

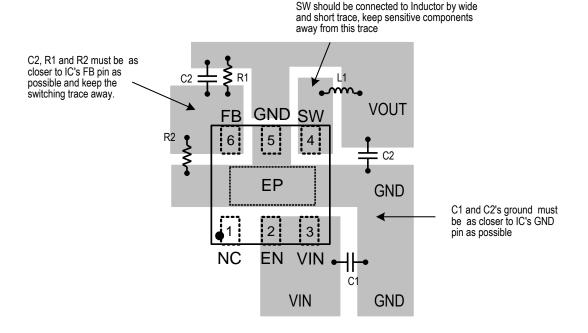
For output voltages above 2.0V, when light-load efficiency is important, the minimum recommended inductor is 2.2μ H. For optimum voltage-positioning load transients, choose an inductor with DC series resistance in the $50m\Omega$ to $150m\Omega$ range. For higher efficiency at heavy loads (above 200mA), or minimal load regulation (but some transient overshoot), the resistance should be kept below $100m\Omega$. The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation (1000mA+100mA).

Input Capacitor Selection

The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. A 4.7μ F ceramic capacitor for most applications is sufficient.

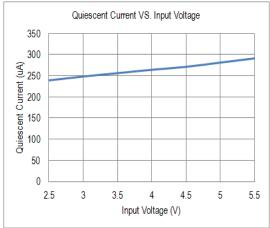

Output Capacitor Selection

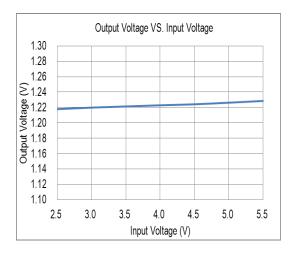
The output capacitor is required to be 10uF to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectrics are recommended due to their low ESR and high ripple current.

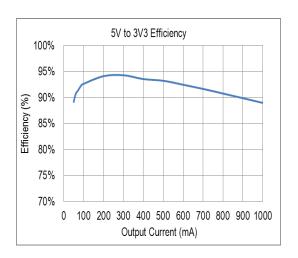

Compensation Capacitor Selection

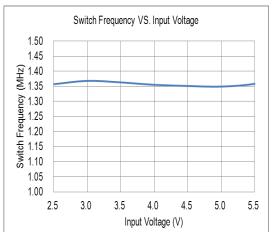
The compensation capacitors for increasing phase margin provide additional stability. It is required 15pF, Please refer to Demo Board Schematic to design.

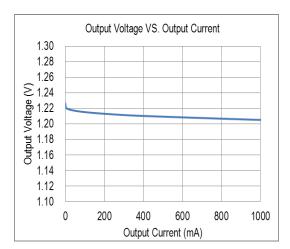
TSOT-23-5L Layout Guide

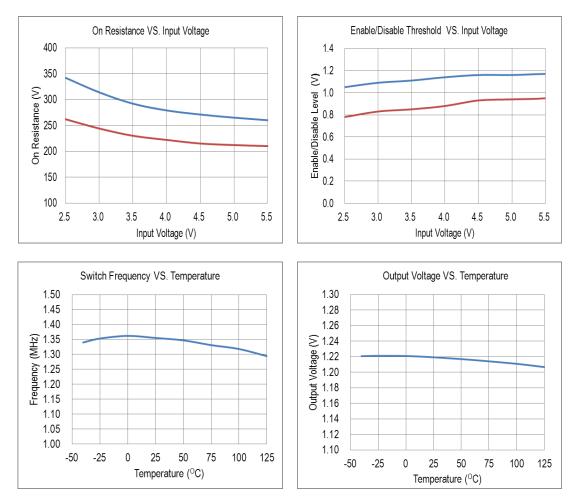

TDFN-6L Layout Guide

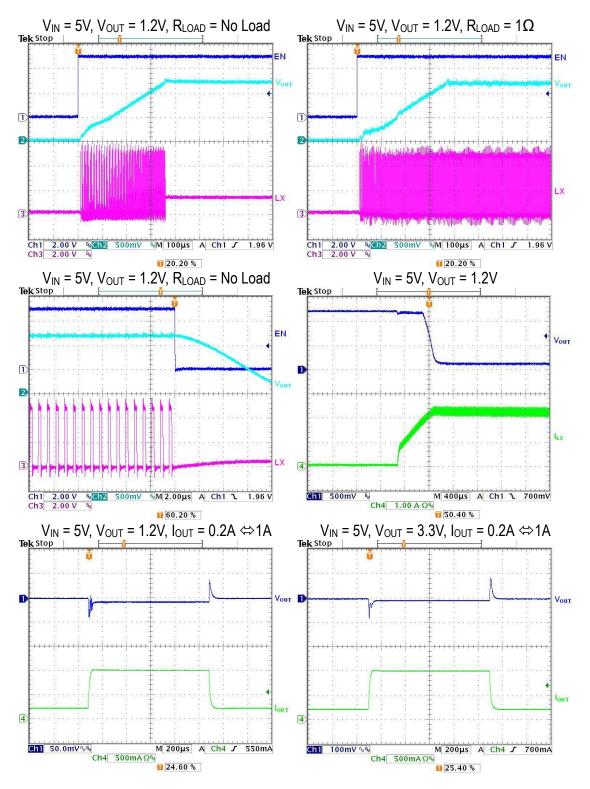



Axelite Confidential Materials, do not copy or distribute without written consent.


*** TYPICAL CHARACTERISTICS**

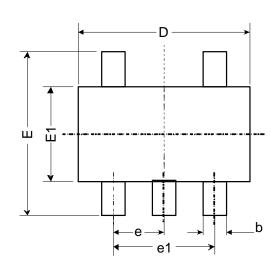


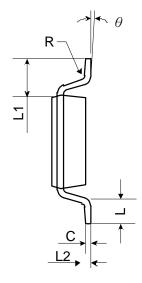


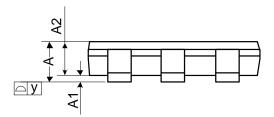


9/13

***** TYPICAL CHARACTERISTICS (CONTINUES)

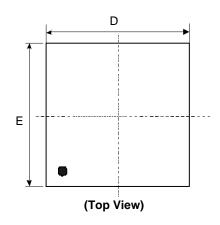

*** TYPICAL CHARACTERISTICS (CONTINUES)**

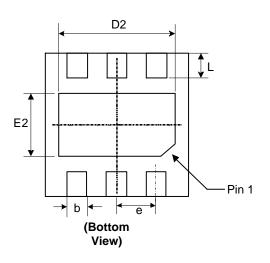


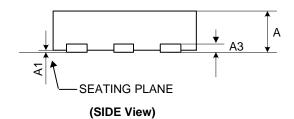

11/13

*** PACKAGE OUTLINES**

(1) TSOT-23-5L




Symbol	Dimensions in Millimeters			Dimensions in Inches			
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
A	-	-	1.1	-	-	0.043	
A1	0	-	0.1	0	-	0.004	
A2	0.7	0.9	1	0.028	0.035	0.039	
b	0.3	0.4	0.5	0.012	0.016	0.02	
С	0.08	0.14	0.2	0.003	0.006	0.008	
D	2.8	2.9	3	0.11	0.114	0.118	
E	2.6	2.8	3	0.102	0.11	0.118	
E1	1.5	1.6	1.7	0.059	0.063	0.067	
е	0.95 BSC.				0.037 BSC.		
e1	1.90 BSC.			0.075 BSC.			
L	0.3	0.45	0.6	0.012	0.018	0.024	
L1	0.60 REF.) REF. 0.024 REF.			
L2		0.25 BSC.			0.010 BSC.		
у	-	-	0.1	-	-	0.004	
R	0.1	-	-	0.004	-	-	
θ	0°	-	8°	0°	-	8º	


JECED outline: MO-193 AB

12/13

(2) TDFN-6L (2*2 0.75mm)

Symbol	Dimensions in Millimeters			Dimensions in Inches		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
А	0.7	0.75	0.8	0.028	0.03	0.031
A1	0	0.02	0.05	0	0.001	0.002
A3		0.203 REF. 0.008 REF.				
b	0.2	0.28	0.35	0.009	0.011	0.013
D	1.95	2	2.05	0.077	0.079	0.081
D2	1.35	1.5	1.65	0.055	0.059	0.063
E	1.95	2	2.05	0.077	0.079	0.081
E2	0.75	0.9	1.05	0.031	0.035	0.039
е	0.65 BSC.				0.026 BSC.	
L	0.2	0.3	0.4	0.008	0.012	0.016